
poolcerts.com

CPO Pool Math Workbook

Math Calculation Formulas

Disinfectants
Pool Volume
Turnover \& Flow Rates
Water Balance
Chemical Adjustment Breakpoint Chlorination

MATH CALCULATION FORMULAS

Amount Conversions

Ounces to Pounds $=$ Ounces $\div 16=$ Pounds
Fluid Ounces to Gallons $=$ Fluid Ounces $\div 128=$ Gallons

Distance Conversions

$$
\begin{aligned}
\text { Yards to Feet } & =\text { Yards } \times 3=\text { Feet } \\
\text { Meters to Feet } & =\text { Meters } \times 3.28=\text { Feet }
\end{aligned}
$$

```
Surface Areas \(\quad *\) Radius \(=\) Diameter \(\div 2\)
    Rectangle or Square \(=\) Length \(\times\) Width \(=\) Square Feet
                Circle \(=3.14 \times\) Radius \(\times\) Radius \(=\) Square Feet
Pool/Spa Volume
*Average Depth \(=(\) Shallow + Deep \() \div 2\)
Rectangle \(=\) Length \(\times\) Width \(\times\) Average Depth \(\times 7.5=\) Gallons Circle \(=3.14 \times\) Radius \(\times\) Radius \(\times\) Average Depth \(\times 7.5=\) Gallons
```


Turnover Rate

$$
\text { Hours }=\text { Pool Volume } \div \text { Flow Rate } \div 60=\text { Hours }
$$

Flow Rate
Gallons Per Minute $(\mathrm{GPM})=$ Pool Volume \div Turnover Rate $\div 60=\mathrm{GPM}$

Filter Surface Area

$$
\text { Square Feet }=\text { Flow Rate } \div \text { Filtering Rate }=\text { Square Feet }
$$

Heater Sizing

British Thermal Units $(B T U)=$ Pool Volume $\times 8.33 \times$ Temperature Adjustment $=$ BTU

Spa Water Replacement Frequency

Replacement Internvals (Days) = Spa Gallons $\div 3 \div$ Average Users Per Day = Days

CHARACTERISTICS OF DISINFECTANTS

Disinfectants inactivate or kill the vast majority of microorganisms that can cause disease (pathogens). Pathogens include bacteria, fungi, viruses, and protozoan parasites. In addition, disinfectants are effective at killing algae.

	Sodium Hypochlorite	Calcium Hypochlorite	Lithium Hypochlorite	Gas Chlorine	Trichlor	Dichlor	BCDMH (Bromine)
\% Available Chlorine	$10-12 \%$	$47-78 \%$	35%	100%	90%	$56-63 \%$	27%
\% Active Strength	$10-12 \%$	$47-78 \%$	29%	100%	$>99 \%$	$>99 \%$	95.50%
pH in 1\% Solution	$9-14$	$8.5-11$	10.8	0	$2.8-3.5$	$6.5-6.8$	4.8
pH Effect in Water	Raises	Raises	Raises	Lowers	Lowers	Neutral	Lowers
Physical Appearance	Liquid	Granular, Tabs, Briquet	Granular	Gas	Granular, Tabs	Granular	Granular, Tabs

POOL \& SPA VOLUME

Pool Volume *Average Depth $=($ Shallow + Deep $) \div 2$
Rectangle $=$ Length \times Width \times Average Depth $\times 7.5=$ Gallons

Your pool is 120 ft long by 65 ft wide. The shallow end is 4 ft and the deep end is 6 ft . What is the volume in gallons?

Length \qquad x Width \qquad x Average Depth \qquad x 7.5 = Gallons \qquad
Length $120 \times$ Width 65 x Average Depth \qquad x $7.5=$ Gallons \qquad (Shallow 4 + Deep 6 6) $\div 2=$ *Average Depth 5

Length 120 x Width 65 x Average Depth 5 x 7.5 =Gallons 292,500

EXAM AREA:

Length \qquad x Width \qquad x Average Depth \qquad x 7.5 = Gallons \qquad
Length \qquad x Width \qquad x Average Depth \qquad x $7.5=$ Gallons \qquad

Spa Volume
*Diameter $\div 2=$ Radius
Circle $=3.14 \times$ Radius \times Radius \times Depth $\times 7.5=$ Gallons

Your spa diameter is 8 feet, your seating depth is 1.5 feet. The footwell diameter is 4 feet and has a depth of 1.5 ft .

What is the spa volume?
TOTAL SPA VOLUME = A VOLUME + B VOLUME
A $3.14 \times$ Radius \qquad x Radius \qquad x Depth \qquad x 7.5 = Gallons \qquad $3.14 \times$ Radius $4 \times$ Radius $4 \times$ Depth $1.5 \times 7.5=$ Gallons 565.2
B $3.14 \times$ Radius \qquad x Radius \qquad x Depth \qquad x $7.5=$ Gallons \qquad -
$3.14 \times$ Radius $\underline{2} \times$ Radius $\underline{2} \times$ Depth $\underline{1.5 \times 7.5=\text { Gallons } 141.3}$
TOTAL SPA VOLUME__ = A VOLUME__ + B VOLUME \qquad
TOTAL SPA VOLUME 94.2 OR 94 Gallons =A VOLUME 75.36 + B VOLUME 18.84

EXAM AREA:

A $\quad 3.14 \times$ Radius \qquad x Radius \qquad x Depth \qquad x 7.5 = Gallons \qquad
B $3.14 \times$ Radius \qquad x Radius \qquad x Depth \qquad x $7.5=$ Gallons \qquad

TOTAL SPA VOLUME

TURNOVER RATE (TR) \& FLOW RATES (FR)

Turnover Rate (TR) - When the total volume of a pool is passed through its filter within a 6hour period, the pool has had one turnover per 6 hours or 4 turnovers per 24 hours. Codes require that the entire volume of pool water be circulated through the filter in a certain time period. Rates for some water park and speciality pools may vary due to unique conditions, and turnover requirements vary by jurisdictional codes.

Turnover Rate Standards: The following turnover rates are considered standard in most jurisdictions. Use these values to calculate the minimum required flow rate for your facility:
-Swimming Pools - 6 Hours
-Spas - 30 Minutes
-Wading Pools - 1 to 2 Hours
-Waterparks/specialty pools - 3 to 4 Hours
-Hospital.Health Club Pools - as low as 3 Hours
-Therapy Pools - 2 Hours

Flow Rate (FR) - The flow rate is the number of gallons per minute passing a given point in the ciruculation system. Find the required flow rate in gallons per minute (gpm) with a known turnover rate and pool volume.

Formula: Pool Volume (in gallons) \div Turnover Time (in hours) $\div 60$ (min./hour) = Flow Rate (FR in gpm)

Relationship Between Turnover Rate and Flow Rate:

Pool volume (in gallons), FR is the Flow Rate of the pump (in gpm), 60 is the conversion for minutes per hour, and TR is the Turnover Rate

Flow Rate

Pool Volume $\div \mathrm{TR}$ (in hours) $\div 60 \mathrm{~min}=\mathrm{FR}$ in GPM
Example: In a 200,000 gallon pool at a 6 hour turnover rate, what is your flow rate?
Pool Volume ___ $\div \mathrm{TR}$ ___ (in hours) $\div 60 \mathrm{~min}=\mathrm{FR}_{\text {____ }}$ in GPM
Pool Volume $\underline{200,000} \div$ TR $\underline{6}$ (in hours) $\div 60 \mathrm{~min}=$ FR $\underline{555.56}$ in GPM

Turnover Time

Pool Volume $\div \mathrm{FR} \div 60 \mathrm{~min} / \mathrm{hr}=\mathrm{TR}$ in Hours
Example: In a 185,000 gallon pool with a FR of 550 gpm has a turnover rate of?
Pool Volume \qquad \div FR \qquad $\div 60 \mathrm{~min} / \mathrm{hr}=\mathrm{TR}$ \qquad in Hours
Pool Volume $\underline{185,000} \div$ FR $\underline{550} \div 60 \mathrm{~min} / \mathrm{hr}=$ TR $\underline{5.6}$ in Hours

EXAM AREA:

FR Formula Pool Volume \qquad \div TR \qquad (in hours) $\div 60 \mathrm{~min}=\mathrm{FR}$ \qquad in GPM

TR Formula Pool Volume \qquad $\div \mathrm{FR}$ \qquad $\div 60 \mathrm{~min} / \mathrm{hr}=\mathrm{TR}$ \qquad in Hours

WATER BALANCE - SATURATION INDEX

SI $=$	$\mathbf{p H}+$	Tf +	$\mathbf{C f}+$	Af -	TDSf
Saturation Index	pH as Tested	Temperature Factor	Calcium Factor	Alkalinity Factor	TDS Factor

Example:

You are the operator of 100,000 gallon pool. The water tests give you the following readings:
Total alkalinity is 75 ppm . pH 7.4 Calcium hardness 125 ppm . Temperature is 84 .
Total dissolved solids is 500 ppm . What is your saturation index?
Saturation Index Factors

Temperature		Calcium Hardness (Expressed as CaC03)		Total Carbonate Alkalinity	
F	Tf	ppm	Cf	ppm	Af
32	0.0	25	1.0	25	1.4
37	0.1	50	1.3	50	1.7
46	0.2	75	1.5	75	1.9
53	0.3	100	1.6	100	2.0
60	0.4	125	1.7	125	2.1
66	0.5	150	1.8	150	2.2
76	0.6	200	1.9	200	2.3
84	0.7	250	2.0	250	2.4
94	0.8	300	2.1	300	2.5
105	0.9	400	2.2	400	2.6
		800	2.5	800	2.9

Total Dissolved Solid Factors

TDS	Factor
≤ 800	12.1
$801-1,500$	12.2
$1,501-2,900$	12.3
$2900-5,500$	12.4
$>5,500$	12.5

$\mathbf{p H}$	Value	Factor
	7.4	+7.4
Temperature	84	+0.7
Calcium Hardness	125	+1.7
Carbonate Alkalinity	75	+1.9
Sub-Total		11.7
Total Dissolved Solids	500	-12.1
Saturation Index		-0.4

EXAM AREA:

$\mathbf{p H}$	Value	Factor
Temperature		
Calcium Hardness		
Carbonate Alkalinity		
Sub-Total		
Total Dissolved Solids		
Saturation Index		

CHEMICAL ADJUSTMENTS

Pool Volume \qquad $\div 10,000 \times \mathrm{ppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad $=$ \qquad

Increase Chlorine	$\mathbf{1 ~ p p m}$
Chlorine Gas	1.3 oz
Calcium Hypochlorite (67\%)*	2 oz
Sodium Hypochlorite (12\%)	10.7 fl oz
Lithium Hypochlorite	3.8 oz
Dichlor (62\%)	2.1 oz
Dichlor (56\%)	2.4 oz
Trichlor	1.5 oz

Decrease Chlorine	$\mathbf{1 ~ p p m}$
Sodium Thiosulfate	2.6 oz
Sodium Sulfite	2.4 oz

Increase Calcium Hardness	$\mathbf{1}$ ppm
Caclium Chloride (100\%)	1.44 oz
Calcium Chloride (77\%)	1.92 oz

Increase Total Alkalinity	$\mathbf{1 ~ p p m}$
Sodium Bicarbonate	2.24 oz
Sodium Caronate	1.4 oz
Sodium Sesquicarbonate	2 oz

Decrease Total Alkalinity	1 ppm
Muriatic Acid (31.4%)	2.6 fl oz
Sodium Bisulfate	3.36 oz

Increase Stabilizer	$\mathbf{1} \mathbf{~ p p m}$
Cxyanuric Acid	1.3 oz

${ }^{* *}$ Appendix B-2 in Pool \& Spa Operator Handbook

Essential Conversions: Always convert to pounds or gallons
Converting Ounces to Pounds: Total Ounces $\div 16=$ Pounds
Converting Fluid Ounces to Gallons: Total Fluid Ounces $\div 128=$ Gallons

Example:-

You operate a 15,000 gallon pool with a calcium hardness level of 150 ppm . How much calcium chloride (77%) would be required to increase this pool to 220 ppm ?

Pool Volume \qquad $\div 10,000 \times \mathrm{ppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad = \qquad Pool Volume $\underline{15,000} \div 10,000 \mathrm{x} \mathrm{ppm}$ change $\underline{70} \times$ Chemical Used $\underline{1.92} \div$ Essential Conversion $\underline{16}=\underline{12.6 \mathrm{lbs}}$

Example:

How much sodium thiosulfate would you need to lower the free chlorine from 16 ppm to 2 ppm in a 60,000 gallon pool?

Pool Volume \qquad $\div 10,000 \times \mathrm{ppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad $=$ \qquad Pool Volume $\underline{60,000} \div 10,000 \mathrm{x} \mathrm{ppm}$ change $14 \times$ Chemical Used $\underline{2.6} \div$ Essential Conversion $\underline{16}=\underline{13.65 \mathrm{lbs}}$

Example:

How many gallons of sodium hypochloite will be needed to raise the free chlorine from 2 ppm to 4 ppm in a 250,000 gallon pool?

Pool Volume \qquad $\div 10,000 \mathrm{x} \mathrm{ppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad $=$ \qquad Pool Volume $\underline{250,000} \div 10,000 \times$ ppm change $\underline{2} \times$ Chemical Used $\underline{10.7} \div$ Essential Conversion $\underline{128}=\underline{4.18 \text { gallons }}$ Exam Area: Pool Volume \qquad $\div 10,000 \times \mathrm{ppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad $=$ \qquad Pool Volume \qquad $\div 10,000 \times \mathrm{ppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad = \qquad Pool Volume \qquad $\div 10,000 \mathrm{xppm}$ change \qquad x Chemical Used \qquad \div Essential Conversion \qquad $=$ \qquad

BREAKPOINT CHLORINATION

The term breakpoint chlorination is used to describe the process of adding free chlorine (FC) to treat, oxidize or remove combined chlorine. To achieve breakpoint, the free chlorine (FC) in the water must be raised to about 10 times the amount of combined chlorine (CC).

TC -	$\mathrm{FC}=$	CC Combined

\#1 TC \qquad - FC \qquad = CC \qquad
\#2 CC \qquad x $10=$ Breakpoint Chlorination (BPC) \qquad
\#3 BPC \qquad - FC \qquad = PPM Change \qquad
\#4 Pool Volume \qquad $\div 10,000 \mathrm{x}$ PPM Change \qquad x Chemical* \qquad \div Conversion \qquad = \qquad
*(See Appendix B-2 for chemical)

> Essential Conversions: Always convert to pounds or gallons
> Converting Ounces to Pounds: Total Ounces $\div 16=$ Pounds
> Converting Fluid Ounces to Gallons: Total Fluid Ounces $\div 128=$ Gallons

Example: You have a 65,000 gallon pool that has a free chlorine (FC) reading of 1.5 ppm and total chlorine (TC) reading of 3 ppm . How much calcium hypochorite is needed to reach breakpoint?
\#1 TC $\underline{3}-$ FC $1.5=$ CC 1.5
\#2 CC $1.5 \times 10=$ Breakpoint Chlorination (BPC) 15
\#3 BPC 15 -FC 1.5 = PPM Change 13.5
\#4 Pool Volume $65,000 \div 10,000 \times$ PPM Change $13.5 \times$ Chemical* $\underline{2} \div$ Conversion $16=\underline{10.97 \mathrm{lbs}}$
*(See Appendix B-2 for chemical)

Exam Area:

\#1 TC \qquad - FC \qquad = CC \qquad
\#2 CC \qquad x $10=$ Breakpoint Chlorination (BPC) \qquad
\#3 BPC \qquad - FC \qquad = PPM Change \qquad
\#4 Pool Volume \qquad $\div 10,000 \times$ PPM Change \qquad x Chemical ${ }^{*}$ \qquad \div Conversion \qquad $=$ \qquad
*(See Appendix B-2 for chemical)

